Depth Correction

DEPTH CORRECTIONS

Prior to drilling/coring at a new site, the depth to the seafloor must be confirmed. The *Scientific Prospectus* will have depths for each site but they are not always accurate. A simple depth correction will be applied to our 3.5 kHz sonar (echo-sounder) depth using the ECHO-SOUNDING CORRECTION TABLES book, also known as the Matthews' Tables (Carter, 1980). Despite the age of this resource, the tables provide an accurate correction to our depth. For details of how this is achieved, see the General Explanation section of the book.

As the vessel approaches the site, leave the Bathy2010 3.5 kHz sonar running and recording. When the vessel crosses the site or finally settles on site, perform the depth correction described here and give it to the Operations Superintendent if on shift or the Core Tech.

STEP 1 – Set-up Worksheet

Open a new Depth Correction Excel worksheet as shown in Figure 4. There is a copy of the worksheet in the UW folder in the IODP_Technical_Manual folder on the server as well as on the LO Office Display PC. One file can be used for the entire expedition with a tab for each site. You will use this worksheet and its formulas to enter the data and make the correction. Fill out the Exp-Site-Hole and Date.

STEP 2 – Find Correction Area

Determine your latitude and longitude coordinates from the Winfrog screen. Find the position on one of the charts starting on page 133 of the ECHO-SOUNDING CORRECTION TABLES (Figure 1) and determine the Area number you are in. Sometimes it will be very clear which area you are in but if you are right on the edge of an area or just not quite sure, go to the LIMITS OF AREAS table on the adjacent page to precisely determine your area (Figure 2). Write the Area number on the Depth Correction worksheet. Turn to the page with the corresponding TABLE OF TRUE DEPTH FOR GIVEN OBSERVED DEPTH number. You will use this table to make your depth correction in the next step. Check the site positions in the *Scientific Prospectus* to see what areas you may need to use during the expedition.

Example

Your coordinates are N32° 21.2100, E134° 56.70. In this example, you will notice that you cannot really be sure whether you are in zone 53 or 80, see Figure 1. On the adjacent page to the map, we have LIMITS OF AREAS IN FIGURE 3, see Figure 2.

The latitude in our example is between 32 and 33 degrees, so go to that row. The longitude in our case was 134° 56.70, so that is between 134 and 136 degrees. Follow the "32°-33°" row until you get between 134 and 136. There you can read that the correct depth correction table to use in this case is the table number 53.

FIGURE 3

Figure 1. Chart Showing Correction Area

LIMITS OF AREAS IN FIGURE 3

LAT(N)	LIMI	TIN	G LO	NGľ	TUDE	S (E) AND	AR	EA NI	JMB	ERS														
67°-90°	90°E	1	180°																						
60°-67°	90°E	76	164°	47	180°																				
59°-60°	90°E	76	162°	47	180°																				
58°-59°	90°E	76	160°	47	174°	48	180°																		
55°-58°	00°E	76	160°	47	1730	48	180°																		
520-550	00°E	76	1570	47	1700	49	1800																		
510 520	00°E	77	1420	76	1570	40	1700	49	1900																
500 510	90°E	<u></u>	143	70	157	4/	170	40	100																
30-51	90°E	<u></u>	143	/0	150	4/	170	48	180																
49°-50°	90°E	77	143°	76	155°	47	170°	48	180°																
47°-49°	90°E	77	142°	76	153°	47	172°	48	180°																
46°-47°	90°E	77	142°	76	151°	47	161°	48	163°	47	164°	48	166°	47	172°	48	179°	49	180°						
45°-46°	90°E	77	141°	78	142°	76	149°	47	161°	48	166°	47	170°	48	174°	49	180°								
44°-45°	90°E	77	140°	78	142°	76	148°	47	159°	48	173°	49	180°												
43°-44°	90°E	77	139°	78	142°	47	154°	48	160°	49	162°	48	172°	49	180°										
42°-43°	90°E	77	140°	78	141°	47	153°	49	164°	48	167°	49	179°	50	180°										
41°-42°	90°E	78	127°	77	139°	78	141°	47	150°	49	168°	50	170°	49	171°	50	174°	49	178°	50	180°				
40°-41°	90°E	78	127°	77	139°	78	141°	50	142°	47	150°	49	157°	50	158°	49	162°	50	180°						
39°-40°	90°E	78	127°	77	135°	78	136°	77	137°	78	141°	50	142°	47	148°	50	151°	49	152°	50	155°	49	156°	50	
	158°	49	161°	50	180°																				
38°-39°	90°E	78	127°	77	132°	78	133°	77	134°	78	140°	50	145°	47	146°	50	151°	49	152°	50	168°	51	170°	50	180°
37°-38°	90°E	78	1270	77	130°	78	140°	50	156°	51	159°	50	160°	51	161°	50	168°	51	1710	50	175°	51	180°		
36°-37°	90°E	78	140°	50	1420	80	1450	50	1570	51	1630	50	168°	51	1710	50	1730	51	180°		170	~1	100		
35°-36°	90°E	78	1360	80	1430	53	1440	50	1400	52	1530	50	1500	51	1620	50	1640	51	1800						
340-350	00°E	80	1400	52	140	52	1470	50	149	52	1560	50	1580	52	1600	51	1800	51	100						
320.340	00°E	80	1250	53	1260	70	1200	52	140	52	1400	52	150	52	1600	51	1610	52	1620	51	1649	52	1760	51	1900
200 220	90 E	80	135	53	1200	20	139	53	145	52 90	1290	53	1520	52	1700	51	101	52	102	51	104	52	170	51	160
210 220	90°E	00	120	55	1200	00	1220	22	1269	00	1200	55	1409	52	1500	51	160	50	1700	51	1000				
200 210	90°E	80	120	53	130°	80	133	55	130	80	139	53	149*	52	150°	53	152*	52	1/8	51	180°				
30-31-	90°E	80	126°	53	130°	80	132°	53	149°	52	180°														
28°-30°	90°E	79	1230	53	150°	52	180°																		
27-28	90°E	79	1230	53	151°	52	180°																		
26°-27°	90°E	79	123°	53	151°	52	170°	53	172°	52	180°														
25°-26°	90°E	79	123°	53	151°	52	165°	53	172°	52	180°														
24°-25°	90°E	79	121°	53	152°	52	164°	53	172°	52	180°														
23°-24°	90°E	70	99°	79	121°	53	152°	52	154°	53	156°	52	165°	53	173°	52	180°								
22°-23°	90°E	70	99°	79	120°	53	155°	52	161°	53	173°	52	180°												
21°-22°	90°E	70	99°	79	120°	53	155°	52	159°	53	173°	52	180°												
20°-21°	90°E	70	99°	79	121°	53	156°	52	159°	53	173°	52	180°												
18°-20°	90°E	70	99°	79	121°	53	172°	52	180°																
16°-18°	90°E	70	95°	74	99°	79	121°	53	172°	52	180°														
15°-16°	90°E	70	94°	74	99°	79	121°	53	124°	52	126°	53	174°	52	180°										
14°~15°	90°E	70	94°	74	99°	79	121°	53	124°	52	126°	53	173°	52	180°										
13°-14°	90°E	70	930	74	99°	79	1210	81	1230	52	128°	53	1710	52	180°										
120-130	90°F	70	93°	74	00°	79	1210	81	1230	52	1280	53	1420	52	1440	53	170°	52	180°						
110-120	00°E	70	020	74	000	70	1200	81	1250	52	1360	53	1300	52	1500	53	1500	52	1620	52	166°	52	180°		
100-110	00°E	70	020	74	000	70	1100	01 Q1	125	52	1500	53	1570	52	1800	55	139	52	102	55	100	52	160		
00 100	99 E	70	92	74	000	70	119	01	125	52	1900	55	157	52	160										
9 -10 90 00	90°E	70	93	74	000	79	1170	01	120	52	160	52	1560	52	1000										
89-	90°E	70	93	/4	99*	79	117	81	120	52	100	53	150	52	180*	50	1000								
/ - 8 / - 8	90°E	70	95	74	100	79	1170	81	1220	82	1250	52	1550	53	1580	52	180	53	1700	53	1000				
0/-	90°E	70	93~	74	100°	79	117	81	122	82	125	52	155°	53	15/	52	1690	53	170°	52	180°		1.720		1000
5°-6°	90°E	70	94°	74	100°	79	117°	81	120°	82	126°	52	1330	53	134°	52	154°	53	1570	52	1680	53	1730	52	1800
4 5	90°E	70	94°	74	100°	79	116°	82	125°	52	132°	53	134°	52	142°	53	144°	52	154°	53	164°	52	166°	53	176°
		52	180°																						
3-40	90°E	70	95°	74	100°	79	116°	82	125°	52	129°	53	138°	52	140°	53	148°	52	150°	53	180°				
1°- 3°	90°E	70	100°	79	116°	82	125°	52	129°	53	180°	-		_		-									
0°-1°	90°E	70	100°	79	116°	82	120°	52	128°	85	129°	53	155°	55	158°	53	180°								

Figure 2. Limits Of Areas Table

<u>STEP 3 – Correct Depth</u> Before you begin, look at Figure 3 to learn where the sonar dome is in relation to the ship and the drill floor.

Figure 3. JR Depth Configuration Drawing

As you cross the site or settle onto the site, read the depth in meters from the Bathy2010 depth read out, rounding up or down to the nearest meter. Enter this number in Row A, the "Uncorrected Depth to Transducer" in the Depth Correction worksheet (Figure 5).

Enter the last digit of your uncorrected depth in Row B, "Uncorrected Depth Last Digit."

Now comes the tricky part. You will need to determine your lesser and greater depth limits from the TABLE OF TRUE DEPTH FOR GIVEN OBSERVED DEPTH for your area, see example in Figure 5.

Take your depth and round down to the nearest 100 of meters, for instance, 1246m would be 1200m, 738m would be 700m.

Go down the left hand column of Observed Depth until you find your number and corresponding row.

Now look at your 10s of meters, for 1246m that would be 46m. Since 46 is between 40 and 50, your lesser depth limit will be in column 40 and the greater depth limit in column 50.

Use the following formula to determine the corrected depth to the transducer. This formula is used in the Depth Correction worksheet so all you have to do is plug in the numbers.

Verify the worksheet is set up correctly.

$$F = B/10 * (D - C) + C$$

F is the corrected depth to transducer

- B is the last digit of your original depth
- C is the lesser depth limit
- D is the greater depth limit

Example

Let's say you read your depth at 5354 m. As shown in Figure 3, go to the row **5300**. Your uncorrected depth is between 5350 and 5360, so you find your lesser depth limit in column **50** and your greater depth limit in column **60**. Use the following formula to calculate the corrected depth: F = 4/10 * (5393-5382) + 5382 = 5386.4

In this example, the uncorrected depth is 5354m and the corrected depth 5386.4 m. This example is filled out in the Depth Correction worksheet in Figure 4.

<u>STEP 4 – Complete Worksheet</u> Complete the Depth Correction worksheet by adding the 18.4 meters to the corrected depth. This will be the Total Drilling Depth, **row H** in the worksheet, which is given in meters below rig floor (mbrf) which is typically the depth given in the Operations Plan. It is important when expressing depths and communicating them to be clear on what they are relative to. If the Operations Manager or one of the Driller/Core Techs ask for a "depth" or "PDR," they typically want the depth from the rig floor but always be clear by stating that. If desired, get the ship's draft from the Daily Operations report and enter in row "I" to get the water depth.

	PDR DEPTH CORRECTION WORKSHEET									
	Expedition	### U####								
	Site	Δ								
	Matthews Correction Area	53								
	Date	12-Aug-22								
А	Uncorrected Depth To Transducer	5354.0								
В	Uncorrected Depth Last Digit	4								
С	Mathew Lesser Depth	5382								
D	Mathew Greater Depth	5393								
Ε	Mathew Correction (B/10*[D-C])	4.4								
F	Corrected Depth To Transducer (C+E)	5386.4								
G	Transducer to Dual Elevator Stool (DES)	18.4								
н	Total Drilling Depth (F+G)	5404.8								
1	Mean Draft	6.1								
J	Water Depth (F+I)	5392.5								
	Units: meters									

Figure 4. Depth Correction Excel worksheet

Figure 5. Table of true depth for given observed depth

<u>Reference</u>

Carter, D. J. T., 1980, Echo-Sounding Correction Tables, 3rd Edition, Hydrographic Department, Ministry of Defence