Metrohm Ion Chromatograph (IC): Quick Start Guide

V1.1; L. Brandt; Approved 8/21/2013 (DJH) 362T; Approved July 2016 (DJH) 371T; July 2017

369: October 2017 (EM)

Reagents

Make sure all reservoirs are filled with the following reagents:

Dosino Reservoir:

18 mega-ohm DI water

Suppressor Rinse Solution:

0.1% methanol in DI water (1 mL methanol to 1 L DI water)

Suppressor Regenerant Solution:

0.05 M sulfuric acid solution (2.7 mL sulfuric acid to 1 L DI water)

Anions Eluent:

3.2 mM sodium carbonate/1.0 mM sodium bicarbonate solution (purchase concentrated packs from Metrohm, called "A Supp 5 Eluent Snips")

- snip off tube with scissors and pour contents into a 1 L volumetric flask
- rinse the tube with DI water, adding to the flask
- bring flask to volume

Cations Eluent:

1.7 mM nitric acid/1.7 mM PDCA (pyridine-2,6-dicarboxylic acid)

- dissolve 0.248 g PDCA in DI water in a 1 L flask
- add 106 μL concentrated trace metals grade nitric acid
- bring flask to volume with DI water.
- * To make a carboy's worth, in a 2 L volumetric flask, mix 872 μL nitric acid, 2.272 g PDCA with DI water and bring to volume. This may involve using a stir plate with a stir bar in the flask. Pour into the carboy and add three more 2 L flasks filled with DI water.

Setting up the instrument

- 1. Load a method (sets instrument's operational parameters)
 - Select **METHOD** icon in left panel. Select *File -> Open ->* select the method. You can then save the method with a new name for the current Expedition (*File -> Save As*).
- 2. Make a new database for the Expedition (saves results in a central Expedition database)
 - Select **DATABASE** icon in the left panel. Select *File -> Database Manager*. Select *Edit* pulldown then *New*. Type in a new name.
 - Here you can also make a database backup. Select *Database Manager* again and **Backup**, giving a unique Expedition name.

Go back to the **METHOD** panel. In the **Evaluation** window, click on **Results** icon. Select the **Database** tab. Double-click on the *Name Database* field and select your database name for the Expedition.

3. Go back to the **WORKPLACE** icon in the left panel. Select the method that you want the instrument parameters to be set at (**Equilibrium** tab).

Confirm all reagent reservoirs are filled, peristaltic pump tubes are in good shape and their platens are engaged.

To start the instrument, select **Equilibration** tab > **green Start HW** button. To shut down the instrument, select the **red Stop HW** button.

Monitor instrument conditions (Watch window) for ~ 60 min before starting a sequence.

The anions baseline should be $\sim 1 \,\mu\text{S/cm}$. Suppressor may cause a small peak every 10 min or so. The anion pump pressure should be around 6.5 – 7.0 MPa.

The cations baseline should be \sim 870 μ S/cm. The cation pump pressure should be around 4 – 4.5 Mpa.

The column thermostat display appears red until reaching 45°C. Allow the columns to come to temperature before starting sequence.

Preparing the Calibration Standards and Samples

All samples are diluted 1:100 with DI water before analysis.

Prepare a standard curve, 10 mL per level, in IC vials:

	standard 1 (DF 100)	standard 2 (DF 150)	standard 3 (DF 200)	standard 4 (DF 350)	standard 6 (DF 67)	standard 7 (DF50)
IAPSO (μL)	100	66.7	50	28.6	125	150
DI water (μL)	9900	9933.3	9950	9971.4	9875	9850

Make sure that the vials are vortexed before analysis.

To add/edit standards, select **METHOD** panel and **Standards** in the **Evaluation** window. Here you can also add/edit *check standards* information.

Setting up a Sequence

- 1. To set up a sequence, select the **WORKPLACE** panel and **Determination Series** tab.
- 2. To create a new sample table, use the dropdown menu Sample Table -> New.
 Go to Sample Table drop-down and select Properties. In the Display tab, make sure that the Value 1 radio button is checked. Now go to the Edit tab and make sure that the Value 1 radio button is checked. Double click the first row to start populating the sample/sequence table. The table should follow a basic guideline as follows (see Figure 1). The calibration standards will come first, followed by the blank (DI used as a sample), a check standard and then the samples with checks every ten samples or so.

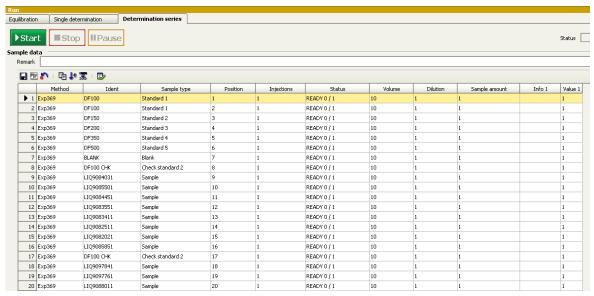


Figure 1 : Sample/sequence table example

Method: 369 (expedition number)

Ident: Text_ID of the sample. Standards are not yet entered into the LIMS so use something like *DF100* or *DF100 CHECK* (for a check standard).

Sample Type: Sample, Standard 1–5, Blank or Check Standard

Position: Autosampler vial position

Injections: 1 Volume: 10 μL

Dilution: Select "1." Dilution is supposed to be the dilution factor for manual or hand dilutions performed by the analyst prior to the sample being placed in the system; however, the standards are built around 1:100 being baseline, so we don't want the software to calculate dilutions.

Sample Amount: Should be "1."

Info 1: Here you can enter a comment or *Label ID* for example.

Value 1: Dosino Dilution Factor, the dilution factor performed by the automated dilution system. For hand dilution, set this to "1."

- 3. After the sample/sequence table is complete, go to the **Sample Table** pull-down, select Save As, and give a name.
- 4. Place the vials in the appropriate chamber according to the sequence table.
- 5. Click on the **Start** button to start the run. A display of the current aspiration will be shown on the Live Display Window.

Evaluating the Calibration/Results

Viewing the calibration:

In the *Database* panel, select a result of interest, in the **Determination Overview** window. In the **Curves 1** window, are tabs for **Anions** and **Cations**. Select either, and then click on the **Calibration curve** radio button. Select the element to evaluate from the pull-down menu.

Viewing results:

In the same *Database* panel, select a result of interest, in the **Determination Overview** window. In the **Curves 1** window, are tabs for **Anions** and **Cations**. Select either, and then click on the **Chromatogram** radio button. You can view the chromatogram, zoom in to check integrations, etc. The results, in a tabular text format, will be in the **Results** window.

Uploading Data to LIMS

Use MUT to upload results to the LIMS.

- In the *Database* panel, select the result(s) to upload. Either click on a row or hold down the <Ctrl>key and select multiple results.
- 2. In the top menu, select **Determinations -> Export**. Select **All Selected Data Records** and export template *Exp368P*. Click **OK**. The Excel csv files will be created in *C*:*Metrohm Export*.
- Copy these csv files to the MUT uploader directory (C:\DATA\in).
 Run MUT.
- 4. Move the csv files in *C:\Metrohm Export* to an Expedition folder and at the end of the Expedition copy over this folder to the DATA1 volume for backup for the shore db.

Helpful Hints

Sometimes the autosampler ends at a position where some vials cannot be accessed. To get the autosampler to move, select the *Manual* tab on the main panel, then select **858 Professional Sample Processor**. Select the **Tower** tab, change the rack position input, then click **Start**.

The business card for the Service rep is taped to the side of the instrument.

The help function in the software is good. Accessed from the top menu.

Maintenance

For maintenance, there are a couple of great guides, located in the Metrohm_backup\METROHM MANUALS folder on the desktop.

850 IC.pdf main instrument guide

IC_maintenance_guide.pdf Outlines maintenance schedules to follow

: changing autosampler ultra-filtration membrane

: changing H₂O and CO₂ scrubbers : replacing peristaltic pump tubing : changing the guard/inline filters

: pump maintenance

Autosampler.pdf autosampler guide
Dosino.pdf Dosino guide

850_pump_maintenance.pdf anion/cation pump maintenance

Metrohm_parts_guide.pdf Parts information to send in requisitions

Metrohm_ultra_filtration.pdf More on the autosampler's ultra-filtration

MagICNet_tutorial.pdf Software guide