Metrohm Ion Chromatograph Quick Start Guide

Introduction

Preparing Reagents, Standards and Samples

Reagents

Dosino Reservoir:

DI water

Suppressor Rinse Solution:

0.1% methanol in DI water

• 1 mL methanol to 1 L DI water

Suppressor Regenerant Solution:

0.05 M sulfuric acid solution

• 2.7 mL sulfuric acid to 1 L DI water

Anions Eluent:

3.2 mM sodium carbonate/1.0 mM sodium bicarbonate solution

- Metrohm "A Supp 5 Eluent Snips"
 - Pour contents into a 1 L volumetric flask.
 - Rinse the tube with DI water, adding to the flask.
 - Bring flask to volume.

Cations Eluent:

1.7 mM nitric acid/1.7 mM PDCA (pyridine-2,6-dicarboxylic acid)

- Dissolve 0.248 g PDCA in DI water in a 1 L flask.
- Add 106 µL concentrated trace metals grade nitric acid.
- Bring flask to volume with DI water.

To make a carboy's worth:

- In a 2 L volumetric flask, mix 872 μL nitric acid, 2.272 g PDCA with DI water and bring to volume.
- This may involve using a stir plate with a stir bar in the flask. Pour into the carboy.
- Add three more 2 L flasks filled with DI water.

Standards

	standard 1 (DF 100)	standard 2 (DF 150)	standard 3 (DF 200)	standard 4 (DF 350)	standard 6 (DF 80)	standard 7 DF(67)	Standard 8 (DF1000) (Pipette from DF100)	Standard 9 (DF2000) (Pipette From DF100)	Standard 10 (Pipette From DF100)	Standard 11 (Pipette From DF100)	
IAPSO (μL)	100	66.7	50	28.6	125	150	1000	500	100	50	
DI water (µL)	9900	9933.3	9950	9971.4	9875	9850	9000	9500	9900	9950	

Prepare a standard curve, 10 mL per level, in IC vials:

• Make sure that the vials are vortexed before analysis.

To add/edit standards, select the **METHOD** panel and **Standards** in the **Evaluation** window. Here you can also add/edit check standards information.

Samples

All samples are diluted 1:100 with DI water.

• Make sure that the vials are vortexed before analysis

Check Standards

- Prepare 10 check standards of DF100 by making 1 mL of IAPSO up to 100 mL with DI water in a 100 mL volumetric flask.
- Shake the flask, then decant the solution into 10 separate IC vials.

Instrument Operation

Startup

- 1. Load a method (sets instrument's operational parameters).
 - Select **METHOD** icon in left panel.
 - Select File -> Open -> select the method.
 - You can then save the method with a new name for the current Expedition (File -> Save As).
- 2. Make a new database for the Expedition (saves results in a central Expedition database)
 - Select DATABASE icon in the left panel.
 - Select File -> Database Manager.
 - Select Edit pulldown then New.
 - Type in a new name.
 - Here you can also make a database backup.
 - Select Database Manager again and Backup, giving a unique Expedition name.
 - Go back to the METHOD panel.
 - In the Evaluation window, click on Results icon.
 - Select the Database tab.
 - Double-click on the Name Database field and select your database name for the Expedition.
- 3. Go back to the WORKPLACE icon in the left panel.
 - Select the method that you want the instrument parameters to be set at (Equilibrium tab).
- 4. Confirm all reagent reservoirs are filled, peristaltic pump tubes are in good shape and their platens are engaged.
- 5. To start the instrument, select **Equilibration** tab > **Start HW** button.

To shut down the instrument, select the Stop HW button.

- 6. Monitor instrument conditions (Watch window) for ~ 60 min before starting a sequence.
 - The anions baseline should be ~ 1 µS/cm. Suppressor may cause a small peak every 10 min or so.
 The anion pump pressure should be around 6.5 7.0 MPa.
 - The cations baseline should be ~ 870 µS/cm.
 - The cation pump pressure should be around 4 4.5 Mpa.
 - The column thermostat display appears red until reaching 45°C.
 - Allow the columns to come to temperature before starting sequence.

Sequences

- 1. To set up a sequence, select the WORKPLACE panel and Determination Series tab.
- 2. To create a new sample table, use the dropdown menu Sample Table -> New.
 - Go to Sample Table drop-down and select Properties.
 - In the **Display** tab, make sure that the **Value 1** radio button is checked.
 - Now go to the Edit tab and make sure that the Value 1 radio button is checked.
 - Double click the first row to start populating the sample/sequence table.

The table should follow a basic guideline as follows (see Figure 1).

- The calibration standards will come first.
- Followed by the blank(DI used as a sample).
- A check standard.
- Then the samples.
- Checks every ten samples or so.

Equilbratio	n Single det	ermination De	termination series								
▶ Sta	rt Stop	II Pause									Status
Sample da	ata										
Remark											
	: •	3									
	Method	Ident	Sample type	Position	Injections	Status	Volume	Dilution	Sample amount	Info 1	Value 1
► 1	Exp369	DF100	Standard 1	1	1	READY 0 / 1	10	1	1		1
2	Exp369	DF100	Standard 1	2	1	READY 0 / 1	10	1	1		1
3	Exp369	DF150	Standard 2	3	1	READY 0 / 1	10	1	1		1
4	Exp369	DF200	Standard 3	4	1	READY 0 / 1	10	1	1		1
5	Exp369	DF350	Standard 4	5	1	READY 0 / 1	10	1	1		1
6	Exp369	DF500	Standard 5	6	1	READY 0 / 1	10	1	1		1
7	Exp369	BLANK	Blank	7	1	READY 0 / 1	10	1	1		1
8	Exp369	DF100 CHK	Check standard 2	8	1	READY 0 / 1	10	1	1		1
9	Exp369	LIQ9084031	Sample	9	1	READY 0 / 1	10	1	1		1
10	Exp369	LIQ9085501	Sample	10	1	READY 0 / 1	10	1	1		1
11	Exp369	LIQ9084451	Sample	11	1	READY 0 / 1	10	1	1		1
12	Exp369	LIQ9083551	Sample	12	1	READY 0 / 1	10	1	1		1
13	Exp369	LIQ9083411	Sample	13	1	READY 0 / 1	10	1	1		1
14	Exp369	LIQ9082511	Sample	14	1	READY 0 / 1	10	1	1		1
15	Exp369	LIQ9082021	Sample	15	1	READY 0 / 1	10	1	1		1
16	Exp369	LIQ9085851	Sample	16	1	READY 0 / 1	10	1	1		1
17	Exp369	DF100 CHK	Check standard 2	17	1	READY 0 / 1	10	1	1		1
18	Exp369	LIQ9097841	Sample	18	1	READY 0 / 1	10	1	1		1
19	Exp369	LIQ9097761	Sample	19	1	READY 0 / 1	10	1	1		1
20	Exp369	LIQ9088011	Sample	20	1	READY 0 / 1	10	1	1		1

Figure 1 : Sample/sequence table example

From Figure 1:

Method : 369 (expedition number)

Ident : Text_ID of the sample. Standards are not yet entered into the LIMS so use something like DF100 or DF100 CHECK (for a check standard).

Sample Type : Sample, Standard 1–5, Blank or Check Standard

Position : Autosampler vial position

Injections : 1

Volume : 10 µL

Dilution: Select "1." Dilution is supposed to be the dilution factor for manual or hand dilutions performed by the analyst prior to the sample being placed in the system; however, the standards are built around 1:100 being baseline, so we don't want the software to calculate dilutions.

Sample Amount : Should be "1."

Info : Here you can enter a comment or Label ID for example.

Value : Dosino Dilution Factor, the dilution factor performed by the automated dilution system. For hand dilution, set this to "1."

3. After the sample/sequence table is complete, go to the Sample Table pull-down, select Save As, and give a name.

4. Place the vials in the appropriate chamber according to the sequence table.

5. Click on the Start button to start the run. A display of the current aspiration will be shown on the Live Display Window.

Evaluating Results

Viewing the calibration:

In the Database panel, select a result of interest, in the Determination Overview window.

In the Curves 1 window, are tabs for Anions and Cations. Select either, and then click on the Calibration curve radio button.

Select the element to evaluate from the pull-down menu.

Viewing results:

In the same *Database* panel, select a result of interest, in the **Determination Overview** window.

In the Curves 1 window, are tabs for Anions and Cations. Select either, and then click on the Chromatogram radio button.

You can view the chromatogram, zoom in to check integrations, etc.

The results, in a tabular text format, will be in the Results window.

LIMS

In the Database panel, select the result(s) to upload. Either click on a row or hold down the <Ctrl>-key and select multiple results.

In the top menu, select Determinations -> Export.

Select All Selected Data Records and export template Exp368P.

Click OK. The Excel csv files will be created in C:\Metrohm Export.

Copy these csv files to the MUT uploader directory (C:\DATA\in).

Run MUT to upload the results to the LIMS.

Move the csv files in C: Wetrohm Export to an Expedition folder and at the end of the Expedition copy over this folder to the DATA1 volume for backup for the shore db.

Maintenance

For maintenance, there are a couple of great guides, located in the Metrohm_backup\METROHM MANUALS folder on the desktop.

850_IC.pdf	main instrument guide			
IC_maintenance_guide.pdf	outlines maintenance schedules to follow			
	: changing autosampler ultra-filtration membrane			
	: changing H_2O and CO_2 scrubbers			
	: replacing peristaltic pump tubing			
	: changing the guard/inline filters			
	: pump maintenance			
Autosampler.pdf	autosampler guide			
Dosino.pdf	Dosino guide			
850_pump_maintenance.pdf	anion/cation pump maintenance			
Metrohm_parts_guide.pdf	parts information to send in requisitions			
Metrohm_ultra_filtration.pdf	more on the autosampler's ultra-filtration			
MagICNet_tutorial.pdf	software guide			

Helpful Hints

Sometimes the autosampler ends at a position where some vials cannot be accessed. To get the autosampler to move, select the *Manual* tab o n the main panel, then select **858 Professional Sample Processor**. Select the **Tower** tab, change the rack position input, then click **Start**.

The business card for the Service rep is taped to the side of the instrument.

The help function in the software is good. Accessed from the top menu.

Credits

This document originated from Word document IC_QSG_369_draft.docx (see Archived Versions below for a pdf copy) that was written by L. Brandt (2013-21-08) and edited by E. Moortgat (2017-10). Credits for subsequent changes to this document are given in the page history.

Archived Versions

IC_QSG_369_draft.pdf